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A New Collocation-Type Method for 
Hammerstein Integral Equations 

By Sunil Kumar and Ian H. Sloan 

Abstract. We consider Hammerstein equations of the form 

y(t) = f (t) + fb k(t, s)g(s, y(s)) ds, t E [a, b], 

and present a new method for solving them numerically. The method is a collocation method 
applied not to the equation in its original form, but rather to an equivalent equation for 
z(t):= g(t, y(t)). The desired approximation to y is then obtained by use of the (exact) 
equation 

y(t) =f(t) +fb k(t,s)z(s) ds, t c [a,b]. 

Advantages of this method, compared with the direct collocation approximation for y, are 
discussed. The main result in the paper is that, under suitable conditions, the resulting 
approximation to y converges to the exact solution at a rate at least equal to that of the best 
approximation to z from the space in which the collocation solution is sought. 

1. Introduction. We present a new collocation-type method for the numerical 
solution of nonlinear integral equations of Hammerstein type. These equations take 
the form 

(1.1) y(t) = f(t) + 
b 

k(t, s)g(s, y(s)) ds, t E [a, b], 

where -x < a < b < x, f, k, and g are known functions and y is the solution to 
be determined. The function g(s, v) is assumed to be nonlinear in v. Appropriate 
smoothness assumptions on f, k, and g, to be made later, will ensure that, in a 
suitable Banach space, the right-hand side of Eq. (1.1) defines a completely continu- 
ous operator acting on y. 

The standard collocation method [2, p. 700] approximates the solution y of Eq. 
(1.1) by wn, where 

n 

(1.2) wn(t) = bnjUnj(t), t E [a, b] 
j=1 

with the functions un,D..., unn being known, and the unknown coefficients 

bnl ... , bnn being determined by requiring wn to satisfy the n nonlinear equations 

(1.3) Wn(i-j) f('ni) + b 
k(Tnir s)g(s,wn(s)) ds, i = n, 
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for n distinct (collocation) points Tnl, ... ,Tnn in [a, b]. The convergence of wn to y 
may be proved, under suitable conditions on unl,1, unn and Tnl *Tnn, by 

applying the general theory of [19]. 
Substitution of (1.2) into (1.3) leads to a system of nonlinear equations for 

bnj, .. S bnn: 

n f b ( n 

(1.4) L Unj(Tni)b = f(rn) +|J k(Tnr, s) g s, E bn1unj(s ) ds, 

i= 1,...,n. 

Usually, this system of nonlinear equations will have to be solved by some kind of 

iterative method. It is therefore a marked disadvantage of the above collocation 
method that the n definite integrals in (1.4) need to be evaluated at each step of the 

iteration. In practice, these integrals will have to be approximated by a numerical 

integration technique. 
In contrast, an advantage of the method proposed below is that integrals of a 

similar nature (see (1.10)) need to be calculated once only, and result in a closed set 

of algebraic nonlinear equations for the n unknowns. In favorable cases (see, for 

example, the problem studied in Section 5) it may even turn out that the required 
integrals can be evaluated analytically. 

Essentially, the new method involves finding a collocation approximation for the 

function z defined by 

(1.5) z(t):= g(t, y(t)), t E [a, b]. 

On substituting (1.5) into (1.1) we have immediately 

(1.6) y(t) = f(t) + b 
k(t, s)z(s) ds, t E [a, b], 

a 

and hence it follows from (1.5) that z satisfies the nonlinear integral equation 

(1.7) z(t) = g(t, f (t) +| k(t,s)z(s)dsu, t E [a, b]. 

In the following section we shall show that this equation is equivalent to (1.1), in the 

sense of having solutions in one-to-one correspondence with the solutions of (1.1). 
The collocation approximation to z, by analogy with the standard collocation 

method described above, is of the form 
n 

(1.8) Zn(t) 
= E anjunj(t), t e [a,b], 

j=1 

where the coefficients anl1 .'.. ann are determined by collocating (1.7) at the colloca- 

tion points Tnl, ... I Tnn, 

(1.9) zn(Tni) = g(Tni,f(Tni) + k(Tni S)Zn(S)dS i = l,..., n, 

or 
n n b 

( E U( ni)anj T(nInj f(Tni) + E f k(Tni, s)unj(s) dsan.I 

(1.10) j=1 
njT 

J_= 

nj 

iw= l,n...,Ifn, 

which is a closed set of n algebraic nonlinear equations for anll ann. 
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The required approximation to the solution y of (1.1) is obtained, within our 
present method, by substituting the approximation zn into the right-hand side of 
(1.6). That is, the approximation to y is yn, where 

yn(t) = f (t) + b 
k(t,s)zn(s) ds 

(1.11)n 
=f(t) + E 

b k(t, s)un1(s) dsanj. 
j=la 

The principal task in this paper is to show that the approximation yn converges 
under suitable conditions to an exact solution of (1.1), and to analyze the rate of this 
convergence. This is carried out in Section 4, the preceding two sections being 
devoted to establishing the equivalence of (1.1) and (1.7), and to the introduction of 
some useful smoothness assumptions. The final section examines a numerical 
example in some detail. 

It may be remarked here that the passage from Zn to yn, achieved in (1.11) by the 
application of an integral operator, will often give a rather smooth approximation 

yn, even if Zn is, say, a piecewise-constant approximation. This might be considered 
another advantage of the proposed method compared with the conventional colloca- 
tion method. It may be useful to observe that if g(s, y(s)) = y(s), whence (1.1) 
reduces to a linear integral equation, then the approximation y*, becomes what is 
sometimes called a 'product-integration' approximation [1]. The linear case also 
suggests another possibility: that under suitable circumstances, the final integration 
in (1.11) may involve significant cancellation, and so may lead to Yn converging to y 
faster than zn converges to z. Since this 'superconvergence' is a subtle question even 
in the linear case [5]-[8], we choose to defer its consideration to a future paper. 

2. Operator Equations for y and z. In this section we wiite the integral equations 
for y and z, Eqs. (1.1) and (1.7), in operator form, and establish that their solutions 
are in one-to-one correspondence and have certain properties in common. 

A convenient setting for the analysis of (1.1) is the space C = C[a, b], the Banach 
space of continuous functions on [a, b] with the uniform norm 

IIxII= sup lx(t)I, x E C. 

On the other hand, it is convenient to analyze (1.7) in the space L, = LOO(a, b), the 
Banach space of essentially bounded functions on (a, b) equipped with the norm 

||w ||=ess sup I w (t) |, w E- L, , 
a< t<b 

in order to allow the possibility of discontinuous approximations to z. 
It is also convenient to make the following assumptions on the functions f, k, and 

g in (1.1): 
Al. fe C; 
A2. the kernel k satisfies 

sup |Ik(t,s)Ids< x 
asZtAb a 

and 

lim j |k(t, s) - k(t', s) I ds = 0, t' E [a, b]; 
t at' 
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A3. the function g(t, v) is defined and continuous on [a, b] X R. 
Note that under assumption A2 it follows from the Arzela-Ascoli theorem [9, p. 

27] that the linear integral operator K, defined by 

(Kw)(t):= 
b 

k(t, s)w(s) ds, t E [a, b], 

is a compact operator from L., to C, and hence also from C to C. Being both 
compact and linear, it is necessarily (see [9, p. 244]) completely continuous (c.c.). 

We also define a nonlinear operator T, differing from K merely by an inhomoge- 
neous term: 

(2.1) T(w)(t):= f(t) +(Kw)(t), t E [a,b], w E Loo. 
Clearly T, like K, is a c.c. operator from L., to C. 

Finally, we define a 'substitution' operator G by 

(2.2) G(x)(t):= g(t,x(t)), t e [a,b], x E C. 

The substitution operator is a continuous, bounded operator on C [13, p. 81], but it 
is not c.c. except in the uninteresting case in which the function g(t, v) is indepen- 
dent of v. 

With the above notation, the integral equations (1.1) and (1.7) may be written as 

(2.3) y =TG(y), y e C, 

and 

(2.4) z = GT(z), z E Lt. 

Since T is c.c. from L., to C, and G is continuous and bounded on C, it follows [13, 
p. 74] that TG is c.c. on C, and GT is c.c. on L.. 

The following lemma forms the basis of our present method. It establishes the 
one-to-one correspondence between the solutions of (2.3) and (2.4), a result which 
has been pointed out by [13, p. 143]. 

LEMMA 1. The sets OTG:= { y E C: TG(y) = y} and eGT:= t z E L: GT(z) = 

z } are in one-to-one correspondence. Specifically, G is a one-to-one operator from eTG 

onto 0GT' with inverse T. 

In the present work we are interested only in solutions y* of (2.3) that are 
geometrically isolated [101 -that is to say, there exists some ball t y E C: IIy - y* 
< a), with a > 0, that contains no solution of (2.3) other than y*. 

LEMMA 2. If y* is a geometrically isolated solution of (2.3), then z* G(y *) is a 
geometrically isolated solution of (2.4). Conversely, if z * is a geometrically isolated 
solution of (2.4), then y * := T(z *) is a geometrically isolated solution of (2.3). 

Proof. The result follows easily from the continuity of T and G. [ 
We shall subsequently make some use of a topological approach to the study of 

nonlinear equations [11], [13}. In this approach considerable importance attaches to 
the index of a geometrically isolated solution of an equation such as (2.3). By 
definition, the index of the geometrically isolated solution y* is the common value 
of the rotation of the vector field I - TG (I being the identity) over all sufficiently 
small spheres centered at y*. (For a discussion of rotation, see [13]; in particular, see 
the properties listed on p. 100.) 
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LEMMA 3. Let y * be a geometrically isolated solution of (2.3) and let z * be the 
corresponding geometrically isolated solution of (2.4). Then y * and z * have the same 
index. 

Proof. This is a special case of Theorem 26.3 of [13]. [ 
A geometrically isolated solution of a fixed-point equation is of particular interest 

if its index is nonzero, since such solutions are generally stable under small 
perturbations of the problem. We shall exploit this property in the analysis of the 
approximate method in Section 4. (Geometrically isolated solutions with index zero, 
on the other hand, are much less favorable for approximate analysis, as may be 
gathered from a consideration of the solution x* = 0 of the one-dimensional 
fixed-point equation x = x - x 2, which is equivalent to the equation x 2 = 0.) 

3. Smoothness of g. Under mild smoothness assumptions on g, the operator GT 
in (2.4) is Fr;echet differentiable. The usefulness of this knowledge becomes apparent 
in the next section; in brief, it is that it opens the possibility of predicting the rate of 
convergence of Zn to z *, and hence of yn to y *. 

LEMMA 4. Suppose Al to A3 hold. Further, suppose that the partial derivative 

gv(t, v):= ag(t, v)/av exists and is continuous for a < t < b, - x < v < x . Then the 
operator G is continuously Frechet differentiable on C; its-Fr&het derivative at x E C 
is the multiplicative linear operator G'(x) given by 

(3.1) [G'(x)w](t) = gv(t,x(t))w(t), t E [a,b], w E C. 

Furthermore, the operator GT is continuously Frechet differentiable on LOo; its Frechet 
derivative at z E L., is the c.c. linear operator (GT)'(z) given by 

(3.2) [(GT)'(z)w](t) = gv(t,f(t) +(KZ)(t))(Kw)(t), t E [a,b], w E Lc. 

Proof. The first result is well known [13, p. 81] and the second easily proved using 
results in [9, p. 499] and [13, p. 77]. [ 

The link between the Frechet derivative of GT and the topological considerations 
at the end of the preceding section is provided by the following result, which is a 
special case of a theorem of Leray and Schauder [13, p. 108]. 

PROPOSITION 1. Assume Al to A3 hold, and let gv(t, v) exist and be continuous for 
a < t < b, - o < v < x. Further, let z* be a solution of (2.4), and assume that the 
linear operator (GT)'(z*) does not have 1 as an eigenvalue. Then the solution z* is 
geometrically isolated and has index + 1. 

In particular, under the conditions stated in the proposition, the solution z* is 
stable under small perturbations. Following Keller [10], we shall say that the 
solution z * is an isolated solution of (2.4) if Proposition 1 holds. It then follows that 
an isolated solution is also geometrically isolated and has an index of + 1. 

4. Convergence of the Approximate Method. In this section we apply the theory 
[12], [18], [19] of the approximate solution of nonlinear operator equations by 
projection methods, to prove the convergence of Zn to z *, and hence the convergence 
of yn to y*. (For other applications of this theory, see [14], [17], [20].) To this end we 
first place the collocation procedure for approximating z* within a projection 
method framework [1], [12], [19] by introducing an interpolatory projection operator 
Pn. 
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Let the functions un, .. ., unn be piecewise continuous on [a, b] (this, of course, 
includes the continuous case) and such that each is right-continuous at point a, and 
left-continuous at every discontinuity as well as at point b. We assume, for 
simplicity, that 

(4.1) Unj(Tni) =i 1 i i j < n, 

where Sij is the Kronecker delta, since this may always be achieved by an ap- 
propriate basis transformation within the subspace Un:= span{ unl, 1,., unn } C Lo. 

Let Pn be the interpolatory projection operator from C + Un to Un, defined, for 
w E C + Un, by 

n 

(4.2) (PnW)(t) = E W(Tnj)Unj(0, t E- [a, b]. 
j=1 

It may be easily shown that Pn is a bounded linear operator on C + Un with image 

Un, that its norm is 
n 

(4.3) IIPn sup E lunj(t) 1 
a(t(b j=i 

and that it has the idempotent property pn = Pn. 
We shall assume that the subspace Un and the collocation points t Tni }in 1 are such 

that 

(4.4) lim || w -Pnwj| = 0 for all w E C. 
n --oo 

It then follows from the Banach-Steinhaus (or uniform boundedness) theorem [9, p. 
203] that Pn is uniformly bounded as an operator from C to Un C Lo. Hence (since 

IPnIC, Un is equal to the right-hand side of (4.3)) 

(4.5) 1 Pn|| cl, 

where cl > 0 is independent of n. 
Using the operator Pn, we may write the collocation equations (1.8) and (1.9) as 

the single equation 

(4.6) Zn = PnGT(zn), Zn E Un C L. 

From Lemmas 1 to 4 and a direct application of Theorem 19.7 of [12] we now 
obtain 

THEOREM 1. Let y * E C be a geometrically isolated solution of (2.3), and let z * be 
the corresponding solution of (2.4). Suppose Al to A3 hold, and that the interpolatory 
operator Pn satisfies (4.4). 

(i) If y * has a nonzero index, then there exists an n0 such that for n > n0, (4.6) 
has a solution zn Ee Un satisfying 

jz -Zn 1 
? *O as n xc. 

(ii) Suppose that the partial derivative gv(t, v) exists and is continuous for a t < b, 
-oo < v < xo, and that 1 is not an eigenvalue of the linear operator (GT)'(z*). Then 
there exists a neighborhood of z * and an n1 such that for n > n1 a solution Zn of (4.6) 
is unique in that neighborhood, and 

C211Z* - PnZ *| -z - Zn -< C311Z* 
- 

PnZ 1, 

where c2, C3 > 0 are independent of n. 
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COROLLARY 1. Under the conditions in Theorem 1(ii) there exists a constant C4 > 0 

such that 

Iz* - Zn || < C4 inf ||z* -<D 

Proof. For any 0 E Un, 

IIZ* - PnZ*II=II(I- Pn)(Z* - 11)||< (i +IIPnlI)II Z*- 
The result now follows from the uniform boundedness of the operator Pn. [ 

Thus we see that zn converges optimally to z *, in the sense that it converges to z * 

with the same asymptotic order as the best approximation to z * from Un. 
A convergence result for yn is now easily obtained. 

THEOREM 2. Let y * E C be a geometrically isolated solution of (2.3), and let z * be 
the corresponding solution of (2.4). Suppose Al to A3 hold, and that the interpolatory 
operator Pn satisfies (4.4). 

(i) If y * has a nonzero index, then with Zn as in Theorem 1(i), and n > no, (1.11) 

defines an approximation yn Ee C satisfying 

II Y* -yn| 11 asn cc. 

(ii) Suppose that the partial derivative gj(t, v) exists and is continuous for a ? t < b, 
- xc < v < oo, and that 1 is not an eigenvalue of the linear operator (GT)'(z *) Then 
for n > n1 the approximation yn given by (1. 11), with Z n as in Theorem 1(ii), satisfies 

IIY Yn | I C5 inf | z - 

where c5 > 0 is independent of n. 

Proof. (i) Since T maps Lo. to C, it follows immediately from the definition 

Yn:= T(Zn) that yn E C. Now from Lemma 1, 

y* = T(z*) = f + Kz*, 

and hence 

1 Y yn K(z- Zn) ||K z Zn 0 as n -- x, 
where 

||KII= sup b Ik(t, s)ds < Xc. 

(ii) This follows similarly, with the aid of Corollary 1. [ 
Thus the rate of convergence of yn to y* is, at the very least, equal to the rate of 

convergence of the best approximation to z * from Un. 

5. A Numerical Example. In this section the proposed method is used to solve an 
integral equation reformulation of the nonlinear two-point boundary value problem 

y"(t) - exp(y(t)) = 0, t e (0,1); y(O) = y(l) = 0, 

which evidently is of some interest in magnetohydrodynamics [3, p. 41]. This 
problem has the unique solution 

y*(t) = -ln(2) + 21n(c/cos(c(t - )/2)), 
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where c is the only solution of c/cos(c/4) = F2, and may be reformulated as the 
integral equation 

(5.1) y(t) k(t,s)exp(y(s))ds, t E [0,1], 

where the kernel 

k(t,s) f-t(l - ) s > t 

is the Green's function for the homogeneous problem 

y"(t) = 0, t E (0, 1); y(O) = y(l) = 0. 

Equation (5.1) was solved by the new method, with the collocation points chosen 
to be T = (j - 1)/(n - 1), j - 1,...,n, and the basis functions unl,..., Unn 
defined as follows: 

Un1(t) 
= (t n2)/(Tnl 

- 
Tn2), t E [nl, Tn2] 

0, otherwise; 

-(t Tn,j-l)/(nj Tn,j-), t E (Tn,j-1 Tnj] 

Unj(t) i - Tn,j+l)/('nj Tn,j+l)' t e (Tnj, Tn,j+l] 
j 2 . I ; 

ol O,otherwise I 
Unn(t) = U nl(l t). 

That is, the solution z*(t) = exp(y*(t)) of the integral equation 

z(t) = exp(1 k(t,s)z(s)ds), t E [0,1], 

was approximated by the process of continuous piecewise-linear collocation [8]. 
Note that for the above choice of the basis functions and collocation points, Pn is 

a uniformly bounded operator on C[0, 1] and (4.4) holds [21]. Notice that in this case 
(4.1) also holds, and so the nonlinear system corresponding to (1.10) is simply 

(5.2) ani= exp( E 1 k(Tni,s)unj(s)dsan) i n. 

The integrals in (5.2) (and later those in (1.11)) were calculated exactly, and the 
system (5.2) was then solved for the unknowns anl,..., annby More and Cosnard's 
implementation [16] of a modification [15] of Brent's method [4]. All computations 
were carried out in double precision on a Vax 11/750 computer. 

It is well known that approximation by piecewise-linear functions yields, at best, 
O(h2) convergence, where h is the maximum distance between the breakpoints of 
the pieces. Thus from Theorems 1 and 2 we expect 

Iz Zn = O(h11), jIy*-ynj = O(h(2) 

with 4 = 42 = 2. This is confirmed by the results in Table I. 
The maximum errors listed in Table I were estimated by taking the largest of the 

computed errors at t = (i - 1)/256, i = 1,... ,129. (Here we have used the fact that 

(5.1) is symmetric about t = 2.) Estimates of 4j were obtained by using the formula 

4j = 
ln(jZ| - Znl||/|lZ* - Z2n-lll)/ln(2). 

The estimates Of v2 were calculated similarly. 
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TABLE I 

n || Z* - Znll Estimate of j || Y * - Yn 11 Estimate of 42 

5 7.81 E-3 1.87 5.19 E-4 2.02 
9 2.13 E-3 1.93 1.28 E-4 2.00 

17 5.61 E-4 1.96 3.20 E-5 2.00 
33 1.44 E-4 1.98 7.99 E-6 2.00 
65 3.66 E-5 2.00 E-6 
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